FC2ブログ

内積が不変という意味

ローレンツ変換は、ミンコフスキー内積を不変にする変換なので、
「内積が不変」とはどういうことかということをずっと考えていて、
この意味に2通りあることに気づきました。
それで、ちょっと混乱していたようで、そこが整理できると、すっきりしました!

まず、計量テンソル gmn を定義して、
その計量を用いた場合の内積 (x, y) というものを
\[
(x,y) = x^m g_{mn} y^n = x^m y_m
\tag{1}
\]
で定義します。
最後の等式には、計量テンソルによる降階を使っています。

これを別の座標系に座標変換したとすると、
(つまり、別の基底で見たとすると)
\[
(x',y') = x'^\mu g'_{\mu\nu} y'^\nu = x'^\mu y'_\mu
\tag{2}
\]
となります。

(1),(2)どちらの式もテンソルの縮約を使うと、スカラーになるので、
内積は、座標変換によらず不変ということになります。
\[
x^m g_{mn} y^n = x'^\mu g'_{\mu\nu} y'^\nu
\tag{3}
\]

これは、一般的なテンソルの性質だから、どんな座標変換に対しても、成立します。

どうなっているかというと、
座標変換をすると、x も y も成分が反変的に変化しますが、
それに対して、計量テンソルが共変的に変化してくれるように作られていて、
それぞれの変化が相殺して、内積は変化しないというわけです。

つまり、 g が g' に変化しているというところがミソなんですね!

ここで、
ローレンツ変換がミンコフスキー内積を不変にするというのは、
そういう意味での内積不変ではなくて、

g を g'にせず、g のまま用いても内積が変化しない

という意味なんです。

すなわち、
\[
x^m g_{mn} y^n = x'^\mu g_{\mu\nu} y'^\nu
\tag{4}
\]

(3)式と比べると、単に、g のプライム記号が取れただけです。
たった、これだけの違いですが、ここが混乱していると、理解できないですよね。

言い方を変えれば、共変的に変化した計量テンソルがそのままの形を保っている
つまり、$G = [ g_{mn} ]$などという行列を考えた時に、
\[
G = G'
\tag{5}
\]
となっているとも言えます。

例えば、ミンコフスキー計量ならば、
\[
G = \left[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}
\right]
\tag{6}
\]
ですが、これが変換後も
\[
G' = \left[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}
\right]
\tag{7}
\]
のままで、形が変わらないということですね。


だから、「変換によって、計量(テンソル)が不変である」と言った方が分かりやすいのかなあ。
こういう言い方が合ってるかどうか分かりませんが・・・

そして、このような内積不変性は、ミンコフスキー内積に対しては、
ローレンツ変換でしか成立しないことになります。

ここのところが分かったことでだいぶ理解が深まりました。
・・・って、普通そんなに混乱しないものなんだろうか???
スポンサーサイト



数学>テンソル | コメント(0) | 2013/05/07 20:19
コメント

管理者のみに表示